Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Neurol ; 155: 160-166, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38663152

RESUMO

BACKGROUND: SLC6A1-related neurodevelopmental disorder (SLC6A1-NDD) is a rare genetic disorder linked to autism spectrum disorder, epilepsy, and developmental delay. In preparation for future clinical trials, understanding how the disorder impacts patients and their families is critically important. Quality-of-life (QoL) measures capture the overall disease experience of patients. This study presents QOL findings from our SLC6A1-NDD clinical trial readiness study and the Simons Searchlight SLC6A1-NDD registry. METHODS: We compiled QoL data from participants with SLC6A1-NDD enrolled in our clinical trial readiness study (n = 20) and the Simons Searchlight registry (n = 32). We assessed the distribution of scores on the Quality-of-Life Inventory-Disability (QI Disability), Quality of Life of Childhood Epilepsy (QOLCE-55), and Pediatric Quality of Life Inventory Family Impact Module (PedsQL-FIM) administered to caregivers. RESULTS: In our cohort of 52 participants, the mean QI Disability total score was 73 ± 12.3, the QOLCE-55 mean total score was 49 ± 17.1, and the mean total PedsQL score was 51 ± 17.6. Longitudinal QoL scores for a subset of participants (n = 7) demonstrated a reduction in the Family Relationship domain of PedsQL-FIM (Δ-10.0, P = 0.035). Bootstrap resampling of total scores displays nonoverlapping 95% confidence intervals for the 10th, 50th, and 90th percentiles on all three measures. CONCLUSIONS: This is the first study to investigate QoL measures for SLC6A1-NDD. Findings suggest that scores within the 10th percentile's confidence interval could be clinically significant, referring to QI-Disability scores of <61, QOLCE-55 scores of <46, and PedsQL-FIM scores of <42. Future validation studies are needed.

2.
Brain Commun ; 6(2): fcae104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585668

RESUMO

Lafora disease is a fatal teenage-onset progressive myoclonus epilepsy and neurodegenerative disease associated with polyglucosan bodies. Polyglucosans are long-branched and as a result precipitation- and aggregation-prone glycogen. In mouse models, downregulation of glycogen synthase, the enzyme that elongates glycogen branches, prevents polyglucosan formation and rescues Lafora disease. Mouse work, however, has not yet revealed the mechanisms of polyglucosan generation, and few in vivo human studies have been performed. Here, non-invasive in vivo magnetic resonance spectroscopy (1H and 31P) was applied to test scan feasibility and assess neurotransmitter balance and energy metabolism in Lafora disease towards a better understanding of pathogenesis. Macromolecule-suppressed gamma-aminobutyric acid (GABA)-edited 1H magnetic resonance spectroscopy and 31P magnetic resonance spectroscopy at 3 and 7 tesla, respectively, were performed in 4 Lafora disease patients and a total of 21 healthy controls (12 for the 1H magnetic resonance spectroscopy and 9 for the 31PMRS). Spectra were processed using in-house software and fit to extract metabolite concentrations. From the 1H spectra, we found 33% lower GABA concentrations (P = 0.013), 34% higher glutamate + glutamine concentrations (P = 0.011) and 24% lower N-acetylaspartate concentrations (P = 0.0043) in Lafora disease patients compared with controls. From the 31P spectra, we found 34% higher phosphoethanolamine concentrations (P = 0.016), 23% lower nicotinamide adenine dinucleotide concentrations (P = 0.003), 50% higher uridine diphosphate glucose concentrations (P = 0.004) and 225% higher glucose 6-phosphate concentrations in Lafora disease patients versus controls (P = 0.004). Uridine diphosphate glucose is the substrate of glycogen synthase, and glucose 6-phosphate is its extremely potent allosteric activator. The observed elevated uridine diphosphate glucose and glucose 6-phosphate levels are expected to hyperactivate glycogen synthase and may underlie the generation of polyglucosans in Lafora disease. The increased glutamate + glutamine and reduced GABA indicate altered neurotransmission and energy metabolism, which may contribute to the disease's intractable epilepsy. These results suggest a possible basis of polyglucosan formation and potential contributions to the epilepsy of Lafora disease. If confirmed in larger human and animal model studies, measurements of the dysregulated metabolites by magnetic resonance spectroscopy could be developed into non-invasive biomarkers for clinical trials.

3.
Am J Med Genet A ; 188(10): 2908-2919, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35856138

RESUMO

ECHS1 gene encodes a mitochondrial enzyme, short-chain enoyl-CoA hydratase (SCEH). SCEH is involved in fatty acid oxidation ([Sharpe and McKenzie (2018); Mitochondrial fatty acid oxidation disorders associated with short-chain enoyl-CoA hydratase (ECHS1) deficiency, 7: 46]) and valine catabolism ([Fong and Schulz (1977); Purification and properties of pig heart crotonase and the presence of short chain and long chain enoyl coenzyme A hydratases in pig and guinea pig tissues, 252: 542-547]; [Wanders et al. (2012); Enzymology of the branched-chain amino acid oxidation disorders: The valine pathway, 35: 5-12]), and the dysfunction of SCEH leads to a severe Leigh or Leigh-like Syndrome phenotype in patients ([Haack et al. (2015); Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac involvement, 2: 492-509]; [Peters et al. (2014); ECHS1 mutations in Leigh disease: A new inborn error of metabolism affecting valine metabolism, 137: 2903-2908]; [Sakai et al. (2015); ECHS1 mutations cause combined respiratory chain deficiency resulting in Leigh syndrome, 36: 232-239]; [Tetreault et al. (2015); Whole-exome sequencing identifies novel ECHS1 mutations in Leigh, 134: 981-991]). This study aims to further describe the ECHS1 deficiency phenotype using medical history questionnaires and standardized tools assessing quality of life and adaptive skills. Our findings in this largest sample of ECHS1 patients in literature to date (n = 13) illustrate a severely disabling condition causing severe developmental delays (n = 11), regression (n = 10), dystonia/hypotonia and movement disorders (n = 13), commonly with symptom onset in infancy (n = 10), classical MRI findings involving the basal ganglia (n = 11), and variability in biochemical profile. Congruent with the medical history, our patients had significantly low composite and domain scores on Vineland Adaptive Behavior Scales, Third Edition. We believe there is an increasing need for better understanding of ECHS1 deficiency with an aim to support the development of transformative genetic-based therapies, driven by the unmet need for therapies for patients with this genetic disease.


Assuntos
Doença de Leigh , Qualidade de Vida , Animais , Cardiomiopatias , Enoil-CoA Hidratase , Ácidos Graxos , Cobaias , Doença de Leigh/genética , Erros Inatos do Metabolismo Lipídico , Miopatias Mitocondriais , Proteína Mitocondrial Trifuncional/deficiência , Doenças do Sistema Nervoso , Fenótipo , Rabdomiólise , Valina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...